
Incorporating Instruction-Based Sampling into AMD CodeAnalyst

Paul Drongowski, Lei Yu, Frank Swehosky, Suravee Suthikulpanit, Robert Richter
Advanced Micro Devices, Inc.

Software developers need objective, accurate infor-
mation about program behavior to improve application
performance. Program profiles are useful aids in per-
formance analysis and tuning. A profile is a histogram-
like chart that associates execution time or hardware-
level events with specific instruction addresses or lines
of source code.

Event-based profiles show where hardware-level mi-
croarchitectural events (such as cache misses) occur.
Frequently occurring cache misses, data translation
lookaside buffer (DTLB) misses, or branch mispredic-
tions indicate the presence of a potential performance
issue. The nature of an event often indicates a remedial
action. For example, if memory accesses are missing
in the data cache or DTLB, then the data layout or
memory access pattern can be changed to be more
compatible with the underlying memory subsystem.

Profiles can be collected through performance
counter sampling (PCS). A hardware performance
counter is configured to generate an interrupt after
the expiration of a user-defined sampling period. The
sampling period is the number of instances of a
specific, selected microarchitectural event that must
occur before a sample is taken by the profiler. PCS
determines where the program was executing at the
time of the interrupt (i.e., the instruction pointer value)
and tallies the sample into the profile. Ideally, the
sampled instruction address is the address of the in-
struction that actually caused the selected event to
occur. Unfortunately, the culprit’s address is not di-
rectly available and the instruction pointer value on
the interrupt stack is used instead. This address is the
memory location where the program restarts execution
after returning from the interrupt, not the address
of the culprit instruction. Thus, the sampled address
rarely indicates the instruction causing the event that
triggered the interrupt.

Further, a delay, called “skid”, occurs between the
triggering event and the sampling interrupt. Skid on
machines with out-of-order execution varies and is
not a fixed delay. Skid distributes the samples in the
neighborhood near the true culprit instruction. This
produces an inaccurate distribution of samples, and

events are often attributed to the wrong instructions
or lines of source code.

Instruction-Based Sampling (IBS) is a hardware
mechanism that improves the accuracy of profiles.
IBS is supported by AMD Family 10h processors
[1]. The processing pipeline of an AMD Family 10h
processor is separated into two loosely coupled phases:
A front-end phase that fetches AMD64 instruction
bytes and a back-end phase that execute “ops” which
issue from decoded AMD64 instructions. An op is an
internal, fixed-width instruction which is executed by
the pipeline stages in the execution phase. More than
one op may issue from an instruction. Due to the de-
coupling, IBS samples fetches and ops separately, i.e.,
there are two independent sampling mechanisms. We
will concentrate on IBS op sampling in this discussion.

Given a user-defined sampling period, IBS selects
and tags an op to be monitored. The address of the
parent instruction is retained when the op is tagged.
Microarchitectural events caused by the tagged op are
recorded during its execution. Stalls and other delays
are also measured. When the tagged op retires, the
event flags and stall cycles are read by an interrupt
service routine and a sample (consisting of the instruc-
tion address, event flags, and stall cycles) is written to
a profile data file. The events and stall cycles can be
attributed precisely to the culprit instruction since its
address was retained.

Figure 1 is a simple C language implementation
of matrix multiplication. C language allocates two-
dimensional arrays in row major order. Index variable
k changes the fastest. Access to the elements of
matrix_a is sequential while access to matrix_b
touches one element of each row with every iteration.
Each row of a matrix occupies 4,000 bytes. With
an underlying page size of 4,096 bytes, almost every
access to matrix_b causes a DTLB miss.

Table 1 shows the PCS and IBS profiles for DTLB
misses in the innermost loop of the matrix multiplica-
tion program. The DTLB miss samples are distributed
across the body of the inner loop in the PCS profile
and some instructions are falsely identifed as culprits.
The IBS profile precisely identifies the floating point

f l o a t m a t r i x a [1 0 0 0] [1 0 0 0] ;
f l o a t m a t r i x b [1 0 0 0] [1 0 0 0] ;
f l o a t m a t r i x r [1 0 0 0] [1 0 0 0] ;

f o r (i n t i = 0 ; i < 1000 ; i ++) {
f o r (i n t j = 0 ; j < 1000 ; j ++) {

f l o a t sum = 0 . 0 ;
f o r (i n t k = 0 ; k < 1000 ; k ++) {

sum = sum +
m a t r i x a [i] [k] ∗ m a t r i x b [k] [j] ;

}
m a t r i x r [i] [j] = sum ;

}
}

Figure 1: Matrix multiplication (program excerpt)

multiply at address 4011c2 as the performance culprit.
This instruction loads an element from matrix_b and
causes a substantial number of DTLB misses.

IBS reports a wide spectrum of information. Data
cache miss latency, data operand (effective) address,
and locality flags are returned for ops that load data
from memory. Figure 2 shows the distribution of data
cache miss latencies for the read operation in a linked
list pointer-chasing loop. In each case, the length of
the linked list was chosen to fit into a specific level in
the memory hierarchy. The distributions show where
and how often the load operation hit in the memory
hierarchy. Distributions such as these can be combined
with the data operand address and locality information
to guide data layout on a NUMA platform.

AMD CodeAnalystTMPerformance Analyzer [2] is
a suite of tools for program performance analysis.
It supports IBS-based profiling and displays finished
profiles in tabular and graphical form. IBS event counts
are summarized and displayed in terms of IBS derived
events. An IBS derived event [1] is either an abstract
event defined in terms of one or more hardware-
level IBS event flags, or a stall/latency cycle count. A
common set of fifty IBS derived events were defined.
Derived events are aggregated and displayed in the
same manner as PCS events. Through this approach,
we were able to quickly implement IBS support within
the existing CodeAnalyst infrastructure.

References

[1] Advanced Micro Devices, Inc., Software Optimization
Guide for AMD Family 10h Processors, Publication
40546, May 2009.

[2] P. J. Drongowski, An Introduction to analysis and op-
timization with AMD CodeAnalyst Performance An-
alyzer, http://developer.amd.com, September
2008.

Address Instruction PCS IBS
401191 mov edx,[ebp-10h] 52 0
401194 add edx,1 111 0
401197 mov [ebp-10h],edx 0 0
40119a cmp [ebp-10h],1000 0 0
4011a1 jnl 04011d1h 77 0
4011a3 mov eax,[ebp-04h] 0 0
4011a6 imul eax,eax,4000 0 0
4011ac mov ecx,[ebp-10h] 31 0
4011af imul ecx,ecx,4000 0 0
4011b5 mov edx,[ebp-10h] 308 0
4011b8 mov esi,[ebp-08h] 0 0
4011bb fld dword [eax+edx*4+matrix a] 0 18
4011c2 fmul dword [ecx+esi*4+matrix b] 924 3337
4011c9 fadd dword [ebp-0ch] 979 0
4011cc fstp dword [ebp-0ch] 484 0
4011cf jmp 0401191h 153 0

Table 1: DTLB miss events (PCS vs. IBS)

(a) L2 cache access

(b) L3 cache access

(c) Local DRAM access

(d) Remote DRAM access

Figure 2: IBS data cache miss latencies for linked list
pointer chasing

