plain.tw,v 4.12 1995/07/10 21:32:25 web Exp

PLAIN.TW

Wiodek Bzyl matwb@halina.univ.gda.pl
Contents
0] oo Yo ot T 4 TP 2
The layout of the format ..o e 3
LI5S e P 5
FONT @NCOAINE -ttt 6
MAth FONTS ..o e 8
Mathematical SPaCING ... c.uuiiiiii e 9
ReISters alloCation.........couue it e 13
T2 0411 =T3P 15
Yl 10 T3 oY AP 20
Macros for Math ..o e 26
MaACIOS fOF OULPUL o.n ettt 36
HYPRENATION ..o e 39
0T =1 1= T o PP 39
Programming SUPPOIt «....ccuuu ittt 40
APPENICES ... 41
Efficiency and memory-space CoNSIderations.........c..uviiuuiiiuiniiiieiiiin et 41
Extensible delimiters i e e 42
FONT diMENSIONS .. cein it et 42

Ot 1Al e 44

plain.tw Version 4.12 2

Introduction

However, we will not include a verbatim description, because some parts of that file are too
boring, and because the actual macros have been “optimized” with respect to memory space and
running time. D.E. Knuth about plain.tex format.

What follows is devoted to the details of the plain TEX format. This file serves two purposes:

(1) As a documentation of the plain.tex format. Weaving and texing this document should produce
a handy reference.

(2) The division of this web source into ‘chunks’ should ease creation of other formats tailored to
particular applications. Chunks could be easily modified, removed, added, or replaced.

The change file mechanism is not needed in case of TEX language. Change files are used to incorporate
system dependent code into source file, but TEX code is already system independent. TEX code could
be only ‘format dependent’ and here change files could be used. Another feature of format file is
that it evolves with time, yet some intermediate versions are used for preparation of books, articles
etc. All these versions and configurations must be kept well organized, otherwise you are lost. The
Revision Control System is the tool that assists with these tasks. With the RCS it is possible, with
small overhead, to preserve all revisions which evolved from given text document, merge changes
made by others, compare different versions, keep log of changes.

This document consists mainly of excerpts from the TEXBook, but it is organised around the
macros as they appear in the plain. tex rather than around the topics as in a user manual. Therefore
this document is not a user manual, although many definitions are contained here.

plain.tw

The layout of the format

(*)=
(Establish standard category code values)
\catcode‘@ = 11
(Define commonly used constants)
(Provide programming constructs)
(Allocate registers)
(Assign initial values to parameters)
(Set up text fonts)
(Set up math fonts)
(Provide macros for text formatting)
(Provide macros for math formatting)
(Prepare page for output)
(Read hyphenation patterns)
(Initialize the layout)
\catcode‘@ = 12
(Identify the format)

There are 256 characters that TEX might encounter at each step, in a file or in a line of text
typed directly on your terminal. These 256 characters are classified into 16 categories numbered 0

to 15:
Category Meaning Default
0 Escape character \
1 Beginning of group {
2 End of group }
3 Math shift $
4 Alignment tab &
5 End of line (return)
6 Parameter #
7 Superscript -
8 Subscript _
9 Ignored character null)
10 Space U
11 Letter A, ...,Zand a, ..., z
12 Other character none of the above or below
13 Active character ~
14 Comment character %
15 Invalid character (delete)

When INITEX begins, category 12 (other) has been assigned to all 256 possible characters,
except that the 52 letters A...Z and a. ..z are category 11 (letter), and assignments equivalent to

the following have been made:

\catcode ‘\\ =0
\catcode ‘\""M =5
\catcode ‘\""@ = 9
\catcode ‘\ = 10
\catcode ‘\% = 14
\catcode ‘\""?7 = 15

Version 4.12

© 00~y Ot B~ W

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

plain.tw Version 4.12 4

Thus ‘\’ is already an escape character, ‘\char"20’ is a space, and ‘}’ is available for comments
on the first line of the file; ASCII (null) is ignored, ASCII (return) is an end-of-line character, and
ASCII (delete) is invalid.

Furthermore (tab) is given category space, (formfeed) becomes an active character that will
detect runaways on files that have been divided into “file pages” by (formfeed) characters. Finally
the control sequence \active is defined to yield the constant 13.

To re-catcode these special characters—not counting ASCII

(null) ~"e
(tab) ~"I
(linefeed) ~J
(formfeed) ~°L
(return) ~ M
(delete) e

—use the control sequence \dospecials that lists all the characters whose catcodes should probably
be changed to 12 (other) when copying things verbatim. Each symbol in the list is preceded by \do,
which can be defined if you want to do something to every item in the list.

(Establish standard category code values)=

\catcode ‘\{=1

\catcode ‘\}=2

\catcode ‘\$=3

\catcode ‘\&=4

\catcode ‘\#=6

\catcode‘\"=7 \catcode‘\""K=7 % uparrow is for superscripts
\catcode‘_=8 \catcode‘\""A=8 % downarrow are for subscripts
\catcode‘\""I=10

\chardef\active=13 \catcode‘\"=\active % tilde is active
\catcode‘\""L=\active \outer\def "L{\par} 7 ascii form-feed is "\outer\par"

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\"\do\"~"K\do_\do\~~A\do\%\do\~}

To make the plain macros more efficient in time and space, several constant values are declared
as control sequences. If they were changed, anything could happen. So be careful!

(Define commonly used constants)=

\chardef\@ne=1
\chardef\tw@=2
\chardef\three=3
\chardef\sixt@@n=16
\chardef\@cclv=255
\mathchardef\@cclvi=256
\mathchardef\@m=1000
\mathchardef\@M=10000
\mathchardef \@MM=20000

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

plain.tw Version 4.12 5

Text fonts

(Set up text fonts)=

(Provide support for font scaling)

(Define text fonts)

(Encode special characters, and characters not available on the keyboard)
(Provide support for accented characters)

(Assign uppercase and lowercase code values)

(Assign space factor codes)

Fonts assigned to \preloaded are not part of the format, but they are preloaded so that other
format packages can use them. For example, if another set of macros says \font\ninerm=cmr9, TEX
will not have to reload the font metric information for cmr9.

(Define text fonts)=

\font\tenrm=cmr10 7 roman text
\font\preloaded=cmr9
\font\preloaded=cmr8
\font\sevenrm=cmr7
\font\preloaded=cmr6
\font\fiverm=cmr5

\font\preloaded=cmss10 7, sans serif
\font\preloaded=cmssq8

\font\preloaded=cmssilO % sans serif italic
\font\preloaded=cmssqi8

\font\tenbf=cmbx10 % boldface extended
\font\preloaded=cmbx9
\font\preloaded=cmbx8
\font\sevenbf=cmbx7
\font\preloaded=cmbx6
\font\fivebf=cmbx5

\font\tentt=cmtt1l0 % typewriter
\font\preloaded=cmtt9
\font\preloaded=cmtt8

\font\preloaded=cmsltt10 % slanted typewriter

\font\tensl=cmsl10 % slanted roman
\font\preloaded=cmsl9
\font\preloaded=cmsl8

\font\tenit=cmtilO % text italic
\font\preloaded=cmti9
\font\preloaded=cmti8
\font\preloaded=cmti7

\font\preloaded=cmulO % unslanted text italic

63
64
65
66
67
68
69
70
71
72
73

74

75
76
77
78
79

80
81
82
83
84
85
86
87

plain.tw Version 4.12 6
\font\preloaded=cmcscl10 % caps and small caps
\font\preloaded=cmssbx10 % sans serif bold extended
\font\preloaded=cmdunh10 % Dunhill style

\font\preloaded=cmr7 scaled \magstep4 % for titles
\font\preloaded=cmtt10 scaled \magstep2
\font\preloaded=cmssbx10 scaled \magstep2

\font\preloaded=manfnt % METAFONT logo and dragon curve and special symbols

Additional \preloaded fonts can be specified here. (And those that were \preloaded above can
be eliminated.)

(Define text fonts)+=

\let\preloaded=\undefined J, preloaded fonts must be declared anew later.

(Provide support for font scaling)=

\def\magstephalf{1095 }
\def\magstep#1{\ifcase#1 \@m\or 1200\or 1440\or 1728\or 2074\or 2488\fil\relax}
\def\magnification{\afterassignment\m@g\count@}
\def\m@g{\mag\count@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

Font encoding

We usually think of text files as containing characters. It doesn’t cause any problems most
of the time when we use plain ASCII characters—letters A-Z, a—z, the numerals 0-9 and some of
punctuation characters. This illusion is broken down when we start using characters that do not
belong to this limited set, for example, accented characters / mathematical symbols. Then what we
see on screen may not match what we key in. What gets printed may not match what we see on
screen. Moreover, what gets shown on screen and what gets printed depends on what machine we are
on and how the fonts that we are using are set up. In reality text files contain just numeric codes (in
range 0-255) stored in 8-bit bytes, and the mapping between ‘character’ and numeric code is quite
arbitrary. This is because there are very many more characters than the 256 numeric codes possible
with 8-bits. Consequently, there will be a need for more than one possible mapping or ‘font encoding’,
or in other words, there would not be a ‘standard’ encoding that suits all purposes.

When a symbol is built up by forming a box, the \leavevmode macro is called first; this starts
a new paragraph, if TgX is in vertical mode, but does nothing if TEX is in horizontal mode or math
mode. \chardef positions are taken from the fonts cmr10 and cmsy10.

(Encode special characters, and characters not available on the keyboard)=

\chardef\%=‘\%
\chardef\&=‘\&
\chardef\#=‘\#
\chardef\$=‘\$
\chardef\ss="19
\chardef\ae="1A
\chardef\oe="1B
\chardef\o="1C

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

plain.tw Version 4.12 7

\chardef\AE="1D

\chardef\OE="1E

\chardef\0="1F

\chardef\i="10 \chardef\j="11 % dotless letters
\def\aa{\accent23a}

\def\1{\char321}

\def\L{\leavevmode\setbox0\hbox{L}\hbox to\wd0{\hss\char32L}}

\def\leavevmode{\unhbox\voidb@x} % begins a paragraph, if necessary

\def_{\leavevmode \kern.O06em \vbox{\hrule width.3em}}

\def\AA{\leavevmode\setbox0\hbox{h}\dimen@\htO\advance\dimen@-1exJ,
\rlap{\raise.67\dimen@\hbox{\char’27}}A}

\def\mathhexbox#1#2#3{\1leavevmode
\hbox{$\m@th \mathchar"#1#2#3$}}
\def\dag{\mathhexbox279}
\def\ddag{\mathhexbox27A}
\def\S{\mathhexbox278}
\def\P{\mathhexbox27B}

The accent positions are taken from Computer Modern font family. We are about to ‘hard-wire’
CM accent encoding into the format. Different encoding will be necessary if other styles of type are
used.

Three alternative control-symbol accents are defined, suitable for keyboards with extended char-
acter sets: \let\""_=\v, \let\""S=\u, \let\""D=\".

(Provide support for accented characters)=

\def\oalign#i{\leavevmode\vtop{\baselineskip\z@skip \lineskip.25ex

\ialign{##\crcr#1\crcr}}} \def\o@lign{\lineskiplimit\z@ \oalign}
\def\ooalign{\lineskiplimit-\maxdimen \oalign} % chars over each other
\def\sh@ft#1{\dimen\z@.00#lex\multiply\dimen\z@\fontdimenl\font

\kern-.0156\dimen\z@} % compensate for slant in lowered accents
\def\d#1{{\o@lign{\relax#1\crcr\hidewidth\sh@ft{10}.\hidewidth}}}
\def\b#1{{\o@lign{\relax#1\crcr\hidewidth\sh@ft{29}J

\vbox to.2ex{\hbox{\char22}\vss}\hidewidth}}}

\def\c#1{\setbox\z@\hbox{#1}\ifdim\ht\z0=1ex\accent24 #1,

\else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}
\def\copyright{{\ooalign{\hfil\raise.07ex\hbox{c}\hfil\crcr\mathhexbox20D}}}

\def\dots{\relax\ifmmode\ldots\else$\m@th\ldots\,$\fi}
\def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX}

\def\ ‘#1{{\accent18 #1}}
\def\’#1{{\accent19 #1}}
\def\v#1{{\accent20 #1}} \let\""_=\v
\def\u#i1{{\accent21 #1}} \let\~"S=\u
\def\=#1{{\accent22 #1}}
\def\"#1{{\accent94 #1}} \let\~"D=\"
\def\.#1{{\accent95 #1}}
\def\H#1{{\accent"7D #1}}
\def\~"#1{{\accent"7E #1}}
\def\"#1{{\accent"7F #1}}
\def\t#1{{\edef\next{\the\font}\the\textfontl\accent"7F\next#1}}

133

134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

plain.tw Version 4.12 8

INITEX sets \uccode‘rz = ‘X and \uccode‘X = ‘X for all letters x, and \lccode‘x = ‘x,
\lccode ‘X = ‘z; all other values are zero.

(Assign uppercase and lowercase code values)=

%h% Thats all for English language.

Space factor code affects setting of interword glue. The space factor is normally 1000, which
means that the interword glue should not be modified. If the space factor f is different from 1000,
the interword glue is computed as follows: Take the normal space glue for the current font, and add
the extra space if f > 2000. Then the stretch component is multiplied by f/1000, while the shrink
component is multiplied by 1000/ f. (Look up the Appendix for the values of normal space, normal
stretch, normal shrink, and extra space for some of CM fonts.)

INITEX sets space factor codes: \sfcodex = 1000 for all x, except that \sfcode ‘X = 999 for
uppercase letters.

The characters)’, *’, and ‘]’ does not change space factor.

(Assign space factor codes)=

\sfcode‘\)=0 \sfcode‘\’=0 \sfcode‘\]=0

Math fonts

(Set up math fonts)=

(Define math fonts)

(Encode math accents)

(Establish spacing around mathematical objects)
(Assign math codes)

(Assign delimiter codes)

(Define font families)

As was said earlier, the font metric information about preloaded font will be build into the
format. But, if another set of macros says \font\fiftyfiverm = cmr9 at 55pt, TEX will have to
reload again the font metric information for cmr9.

(Define math fonts)=

\font\teni=cmmilO % math italic
\font\preloaded=cmmi9
\font\preloaded=cmmi8
\font\seveni=cmmi7
\font\preloaded=cmmi6
\font\fivei=cmmib

\font\tensy=cmsy1l0 % math symbols
\font\preloaded=cmsy9
\font\preloaded=cmsy8
\font\sevensy=cmsy7
\font\preloaded=cmsy6
\font\fivesy=cmsyb

\font\tenex=cmex10 % math extension

151
152

153
154
155

plain.tw Version 4.12 9

\font\preloaded=cmmib10 % bold math italic
\font\preloaded=cmbsy10 % bold math symbols

Mathematical spacing

Spacing around mathematical object is measured in mu—math units.” 1mu is equal to 1/18 th
part of \fontdimen 6 of the font in family 2.

\quad spacing does not change with the style of formula, nor does it depend on the math font
families that are being used. But thin spaces, medium spaces, and thick spaces do get bigger and
smaller as the size of type gets bigger and smaller; this is because they are defined in terms of
(muglue).

According to these specifications, thin spaces in plain TEX do not stretch or shrink; medium
spaces can stretch a little, and they can shrink to zero; thick spaces can stretch a lot, but they never
shrink.

The following table gives the complete definition of muglue between mathematical objects. A
formula is converted to a math list, and the math list consists chiefly of “atoms” of eight basic
types: Ord (ordinary), Op (large operator), Bin (binary operation), Rel (relation), Open (opening),
Close (closing), Punct (punctuation), and Inner (a delimited subformula). Other kinds of atoms, which
arise from commands like \overline or \mathaccent or \vcenter, etc., are all treated as type Ord;
fractions are treated as type Inner. The following (non-symmetric) table is used to determine the
spacing between pairs of adjacent atoms:

Right atom

Ord Op Bin Rel Open Close Punct Inner

Ord 0 1 (2) 3 0 0 0 ¢D)

Op 1 1 * (3) 0 0 0 (D

Bin (2) (2) * * (2) * * (2)

Left Rel (3 (3 * 0 (3 0 0 (3)
atom Open 0 0 * 0 0 0 0 0
Close 0 1 (2) (3) 0 0 0 (1)
Punct ¢D) &N * 1 ¢D) €] ¢D) D)
Inner (&D)] 1 (2) 3 (&D) 0 1 1

Here 0, 1, 2, and 3 stand for no space, thin space, medium space, and thick space, respectively.
Thin space, medium space, and thin space are equal to values of \thinmuskim, \medmuskip, \thick-
muskip parameters, respectively. The table entry is parenthesized if the space is to be inserted only
in display and text styles, not in script and scriptscript styles. For example, many of the entries in
the Rel row and the Rel column are ‘(3)’; this means that thick spaces are normally inserted before
and after relational symbols like ‘=", but not in subscripts. Some of the entries in the table are ‘*’;
such cases never arise, because Bin atoms must be preceded and followed by atoms compatible with
the nature of binary operations. The conversion of math lists to horizontal lists is done whenever TEX
is about to leave math mode, and the inter-atomic spacing is inserted at that time.

(Establish spacing around mathematical objects)=

\thinmuskip=3mu
\medmuskip=4mu plus 2mu minus 4mu
\thickmuskip=5mu plus 5mu

156
157

158
159
160
161
162
163

plain.tw Version 4.12 10

For the positioning of accents over single character the width of \skewchar is used. For most
of fonts the default value of \skewchar is -1; but the math italic (family 1) and math symbol fonts
(family 2) have special \skewchar values equal to ’177 and ’60, respectively. These are characters
‘"7 and /.

(Encode math accents)=

\skewchar\teni=’177 \skewchar\seveni=’177 \skewchar\fivei=’177
\skewchar\tensy=’60 \skewchar\sevensy=’60 \skewchar\fivesy=’60

A math code is relevant only when the corresponding category code is 11 or 12. When processing
in math mode characters of categories 11 and 12, \char and \chardef characters are replaced by
their math code.

If we denote 15-bit number by "uvwz, then math codes are assigned by

\mathcode (8-bit number) = "uvwz, where

u — the class code (see below for the list)
v — the font family number (see the font tables at the end of this document)
wz — the position of the character in the font

Class Meaning Example Class Meaning Example
0 Ordinary / 4 Opening (
1 Large operator \sum 5 Closing)
2 Binary operation + 6 Punctuation ,
3 Relation = 7 Variable family x

A \mathcode can also have the special value "8000, which causes the character to behave as if
it has catcode 13 (active). This feature makes ’ apostrophe expand to \prime. The mathcode of ’
does not interfere with the use of ’ in octal constants. The mathcode of "8000 is also assigned to
space and underscore.

INITEX sets up \mathcode x = z for x = 0..255, except that \mathcode x = x + “7000 for each
of the ten digits = ‘0 to ‘9; \mathcode z = = + "7100 for each of the 52 letters. TEX looks at the
mathcode only when it is typesetting a character whose catcode is 11 (letter) or 12 (other), or when
it encounters a character that is given explicitly as \char(number).

Class 7 is a special case that allows math symbols to change families. It behaves exactly like
class 0, except that the specified family is replaced by the current value of an integer parameter called
\fam, provided that \fam is a legal family number (i.e., if it lies between 0 and 15). TEX automatically
sets \fam=-1 whenever math mode is entered; therefore class 7 and class 0 are equivalent unless \fam
has been given a new value. Plain TEX changes \fam to 0 when the user types ‘\rm’; this makes it
convenient to get roman letters in formulas, since letters belong to class 7. The control sequence \rm
is an abbreviation for ‘\fam=0 \tenrm’; thus, \rm causes \fam to become zero, and it makes \tenrm
the “current font.” In horizontal mode, the \fam value is irrelevant and the current font governs the
typesetting of letters; but in math mode, the current font is irrelevant and the \fam value governs
the letters. The current font affects math mode only if control space (\) is used or if dimensions are
given in ex or em units; it also has an effect if an \hbox appears inside a formula, since the contents
of an hbox are typeset in horizontal mode.

(Assign math codes)=

\mathcode‘\~"@="2201 % \cdot
\mathcode‘\~"A="3223 % \downarrow
\mathcode ‘\""B="010B % \alpha
\mathcode‘\~"C="010C % \beta
\mathcode‘\~"D="225E % \land
\mathcode‘\""E="023A % \lnot

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

plain.tw

\mathcode‘\~"F="3232
\mathcode‘\""G="0119
\mathcode‘\~"H="0115
\mathcode‘\~"I="010D
\mathcode‘\~~J="010E
\mathcode ‘\~"K="3222
\mathcode‘\""L="2206
\mathcode ‘\~"M="2208
\mathcode ‘\~"N="0231
\mathcode‘\~"0="0140
\mathcode‘\""P="321A
\mathcode‘\~"Q="321B
\mathcode‘\~"R="225C
\mathcode‘\~"S="225B
\mathcode‘\~"T="0238
\mathcode ‘\~"U="0239
\mathcode ‘\~"V="220A
\mathcode‘\~"W="3224
\mathcode‘\~"X="3220
\mathcode‘\~"Y="3221
\mathcode‘\~~Z="8000
\mathcode ‘\"~ " [="2205
\mathcode‘\~"\="3214

\mathcode‘\~"]="3215
\mathcode‘\~~"="3211
\mathcode‘\~"_="225F

\mathcode‘\ ="8000 %
\mathcode‘\!="5021
\mathcode‘\’="8000 7%
\mathcode ‘\ (="4028
\mathcode‘\)="5029
\mathcode ‘*="2203 ¥
\mathcode ‘ \+="202B
\mathcode‘\,="613B
\mathcode ‘\-="2200
\mathcode‘\.="013A
\mathcode‘\/="013D
\mathcode‘\:="303A
\mathcode‘\;="603B
\mathcode ‘\<="313C
\mathcode ‘\=="303D
\mathcode ‘\>="313E
\mathcode ‘\7="503F
\mathcode ‘\ [="405B
\mathcode ‘\\="026E %
\mathcode ‘\]="505D
\mathcode‘_="8000 %
\mathcode ‘\{="4266
\mathcode‘\[="026A
\mathcode ‘\}="5267
\mathcode‘\~"7="1273

% \in

% \pi

% \lambda

% \gamma

% \delta

% \uparrow

% \pm

% \oplus

% \infty

% \partial

% \subset

% \supset

% \cap

% \cup

% \forall

% \exists

% \otimes

% \leftrightarrow
% \leftarrow
% \rightarrow
% \ne

% \diamond

% \le

% \ge

% \equiv

% \lor
\space

“\prime

\ast

\backslash

\-

% \smallint

Version 4.12

11

216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231

plain.tw Version 4.12 12

Delimiter codes are used after \1eft and \right commands, when TEX is looking for a delimiter.
If we denote 24-bit number by "qrstuv, then delimiter codes are assigned by

\delcode (8-bit number) = "qrstuv, where

q — the font family number of

rs — the position of the the small variant of the delimiter
t — the font family number of

uv — the position of the the large variant of the delimiter

INITEX sets all \delcode values to -1, which means that no characters are recognized as delim-
iters in math formulas, except \delcode ‘. = 0, so that ‘.’ stands for “null delimiter”. { and } should
not get delcodes; otherwise parameter grouping fails!

(Assign delimiter codes)=

\delcode‘\ (="028300
\delcode‘\)="029301
\delcode‘\[="05B302
\delcode‘\]="05D303
\delcode ‘\<="26830A
\delcode ‘\>="26930B
\delcode‘\/="02F30E
\delcode‘\|="26A30C
\delcode‘\\="26E30F

All characters that are typeset in math mode belong to one of sixteen families of fonts, numbered
internally from 0 to 15. Each of these families consists of three fonts: one for text size, one for script
size, and one for scriptscriptsize. The commands \textfont, \scriptfont, and \scriptscriptfont
are used to specify the members of each family. Since there are up to 256 characters per font, and
3 fonts per family, and 16 families, TEX can access up to 12,288 characters in any one formula (4096
in each of the three sizes).

The plain.tex format uses family 1 for math italic letters, family 2 for ordinary math symbols,
and family 3 for large symbols. Text italic is put in family 4, slanted roman in family 5, bold roman
in family 6, and typewriter type in family 7. A macro \newfam will assign symbolic names to families
that aren’t already used.

INITEX initializes the mathcodes of all letters A to Z and a to z so that they are symbols of class 7
and family 1; that’s why it is natural to use family 1 for math italics. Similarly, the digits 0 to 9 are
class 7 and family 0. None of the other families is treated in any special way by TEX.

TEX doesn’t check to see if the families are sensibly organized. The only constraint is that the
fonts in families 2 and 3 have special \fontdimen parameters, which govern mathematical spacing
(see Appendix). In Computer Modern only cmsy and cmex have these parameters, so their assignment
to families 2 and 3 is almost mandatory.

During the time that a math formula is being read, TEX remembers each symbol as being
“character position so-and-so in family number such-and-such,” but it does not take note of what
fonts are actually in the families until reaching the end of the formula.

(Define font families)=

\textfontO=\tenrm \scriptfontO=\sevenrm \scriptscriptfontO=\fiverm
\def\rm{\fam\z@\tenrm}

\textfontl=\teni \scriptfonti=\seveni \scriptscriptfonti=\fivei
\def\mit{\fam\@ne} \def\oldstyle{\fam\@ne\teni}

\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy
\def\cal{\fam\tw@}

\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex

232
233
234
235
236
237
238
239
240

241
242
243
244
245

plain.tw Version 4.12 13

\newfam\itfam \def\it{\fam\itfam\tenit} % \it is family 4
\textfont\itfam=\tenit

\newfam\slfam \def\sl{\fam\slfam\tensl} % \sl is family 5
\textfont\slfam=\tensl

\newfam\bffam \def\bf{\fam\bffam\tenbf} % \bf is family 6
\textfont\bffam=\tenbf \scriptfont\bffam=\sevenbf
\scriptscriptfont\bffam=\fivebf

\newfam\ttfam \def\tt{\fam\ttfam\tentt} % \tt is family 7
\textfont\ttfam=\tentt

Registers allocation

Here are macros for the automatic allocation of \count, \box, \dimen, \skip, \muskip, and
\toks registers, as well as \read and \write stream numbers, \fam codes, \language codes, and
\insert numbers.

The main use of these macros is for registers that are defined by one macro and used by others,
possibly at different nesting levels.

The following counters are reserved:

0-9 page numbering

10 count allocation

11 dimen allocation

12 skip allocation

13 muskip allocation

14 box allocation

15 toks allocation

16 read file allocation

17 write file allocation

18 math family allocation
19 language allocation

20 insert allocation

21 the most recently allocated number
22 constant -1

New counters are allocated starting with 23, 24, etc. Other registers are allocated starting with 10.
This leaves 0 through 9 for the user to play with safely, except that counts 0 to 9 are considered to
be the page and subpage numbers (since they are displayed during output). In this scheme, \count
10 always contains the number of the highest-numbered counter that has been allocated, \count 14
the highest-numbered box, etc. Inserts are given numbers 254, 253, etc., since they require a \count,
\dimen, \skip, and \box all with the same number; \count 20 contains the lowest-numbered insert
that has been allocated. \box255 is reserved for \output; \count255, \dimen255, and \skip255 can
be used freely.

It is recommended that macro designers always use global assignments with respect to registers
numbered 1, 3, 5, 7, 9, and always non-global assignments with respect to registers 0, 2, 4, 6, 8, 255.
This will prevent “save stack buildup” that might otherwise occur.

(Allocate registers)=

\count10=22 % allocates \count registers 23, 24,
\count11=9 Y, allocates \dimen registers 10, 11,
\count12=9 % allocates \skip registers 10, 11,
\count13=9 % allocates \muskip registers 10, 11,
\count14=9 % allocates \box registers 10, 11,

246
247
248
249
250
251
252
253
254
255

256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273

274
275
276
277
278
279
280

plain.tw Version 4.12 14

\count15=9 ¥, allocates \toks registers 10, 11,

\count16=-1 % allocates input streams 0, 1,

\count17=-1 % allocates output streams 0, 1,

\count18=3 % allocates math families 4, 5,

\count19=0 J allocates \language codes 1, 2,

\count20=255 % allocates insertions 254, 253,
\countdef\insc@unt=20 % the insertion counter
\countdef\allocationnumber=21 % the most recent allocation
\countdef\m@ne=22 \m@ne=-1 % a handy constant
\def\wlog{\immediate\write\m@ne} ¥, write on log file (only)
(Allocate scratch registers)

{ Provide user-level register allocation macros)

(Define implementation-level register allocation macros)

(Initialize register constants)

Here are abbreviations for the names of scratch registers that don’t need to be allocated.

(Allocate scratch registers)=

\countdef\count@=255
\dimendef\dimen®@=0
\dimendef\dimen@i=1 %, global only
\dimendef\dimen®@ii=2
\skipdef\skip@=0
\toksdef\toks@=0

Now, we define \newcount, \newbox, etc. so that you can say \newcount\foo and \foo will be
defined (with \countdef) to be the next counter. To find out which counter \foo is, you can look
at \allocationnumber. Since there’s no \boxdef command, \chardef is used to define a \newbox,
\newinsert, \newfam, and so on.

(Provide user-level register allocation macros)=

\outer\def\newcount{\alloc@0\count\countdef\insc@unt}
\outer\def\newdimen{\alloc@i\dimen\dimendef\insc@unt}
\outer\def\newskip{\alloc@2\skip\skipdef\insc@unt}
\outer\def\newnuskip{\alloc@3\muskip\muskipdef\@cclvi}
\outer\def\newbox{\alloc@4\box\chardef\insc@unt}

\let\newtoks=\relax % we do this to allow plain.tex to be read in twice
\outer\def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
\outer\def\newtoks{\alloc@5\toks\toksdef\@cclvi}
\outer\def\newread{\alloc@6\read\chardef\sixt@@n}
\outer\def\newwrite{\alloc@7\write\chardef\sixt@@n}
\outer\def\newfam{\alloc@8\fam\chardef\sixt@@n}
\outer\def\newlanguage{\alloc@9\language\chardef\@cclvi}

(Define implementation-level register allocation macros)=

\def\alloc@#1#2#3#4#5{\global\advance\count1#1by\Cne
\ch@ck#1#4#2/, make sure there’s still room
\allocationnumber=\count1#1Y%
\global#3#5=\allocationnumber
\wlog{\string#5=\string#2\the\allocationnumber}}

\outer\def\newinsert#1{\global\advance\insc@unt by\m@ne
\ch@ckO\insc@unt\count

281
282
283
284
285
286
287
288

289
290
2091
2092
203
204
205

plain.tw Version 4.12

\ch@ck1\insc@unt\dimen

\ch@ck2\inscQunt\skip

\ch@ck4\insc@unt\box

\allocationnumber=\insc@unt

\global\chardef#1=\allocationnumber

\wlog{\string#1=\string\insert\the\allocationnumberl}}
\def\chO@ck#1#2#3{\ifnum\count1#1<#2}

\else\errmessage{No room for a new #3}\fi}

We finish with the initalization of some constants.

(Initialize register constants)=

\newdimen\maxdimen \maxdimen=16383.99999pt % the largest legal <dimen>
\newskip\hideskip \hideskip=-1000pt plus 1fill % negative but can grow
\newskip\centering \centering=0pt plus 1000pt minus 1000pt
\newdimen\p@ \p@=1pt % this saves macro space and time

\newdimen\z@ \z@=0pt %, can be used both for Opt and O

\newskip\z@skip \z@skip=0Opt plusOpt minusOpt

\newbox\voidb@x % permanently void box register

Parameters

15

Let’s turn now to TEX’s parameters, which the previous chapters have introduced one at a time;

it will be convenient to assemble them all together.

An (integer parameter) is one of the following tokens:

\pretolerance badness tolerance before hyphenation

\tolerance badness tolerance after hyphenation

\hbadness badness above which bad hboxes will be shown
\vbadness badness above which bad vboxes will be shown
\linepenalty amount added to badness of every line in a paragraph
\hyphenpenalty penalty for line break after discretionary hyphen
\exhyphenpenalty penalty for line break after explicit hyphen

\binoppenalty penalty for line break after binary operation
\relpenalty penalty for line break after math relation
\clubpenalty penalty for creating a club line at bottom of page
\widowpenalty penalty for creating a widow line at top of page

\displaywidowpenalty ditto, before a display

\brokenpenalty penalty for page break after a hyphenated line
\predisplaypenalty penalty for page break just before a display
\postdisplaypenalty penalty for page break just after a display
\interlinepenalty additional penalty for page break between lines
\floatingpenalty penalty for insertions that are split
\outputpenalty penalty at the current page break
\doublehyphendemerits demerits for consecutive broken lines
\finalhyphendemerits demerits for a penultimate broken line
\adjdemerits demerits for adjacent incompatible lines

\looseness change to the number of lines in a paragraph

\pausing positive if pausing after each line is read from a file
\holdinginserts positive if insertions remain dormant in output box
\tracingonline positive if showing diagnostic info on the terminal
\tracingmacros positive if showing macros as they are expanded

plain.tw Version 4.12 16

\tracingstats positive if showing statistics about memory usage
\tracingparagraphs positive if showing line-break calculations
\tracingpages positive if showing page-break calculations
\tracingoutput positive if showing boxes that are shipped out
\tracinglostchars positive if showing characters not in the font
\tracingcomman