Problem page 100 : "The Theory of the Moire Phenomenon" Volume II, by I. Amidror, published by Springer,

3-18 Synthesis of a layer superposition having a predefined fixed locus.

"Design layer transformations $\mathbf{g}_1(x, y)$ and $\mathbf{g}_2(x, y)$ that will produce in the superposition of two initially identical random screens a fixed locus consisting of a star-like curve that surrounds the origin as shown in the figure on the front cover of this book. Hint: In this case, you may consider a top-opened conic surface having star-like level lines, such as $z = r(1 + 0.5 \cos 5\theta)$, or, possibly, $z = r/(1 + 0.5 \cos 5\theta)$, which gives a slightly different star. You may adjust the orientation of the star by replacing cos by sin or by $- \sin$, as seems suitable. In order to have this surface intersect the x, y plane along a star, you need to lower it by some constant $z_0: z = r(1 + 0.5 \cos 5\theta) - z_0$. But if you wish to obtain a more complex surface that intersects the x, y plane on a family of concentric stars, you may consider a surface such as: $z = \sin(r(1 + 0.5 \cos 5\theta))$."

